Self-consistent field calculations of excited states using the maximum overlap method (MOM).
نویسندگان
چکیده
We present a simple algorithm, which we call the maximum overlap method (MOM), for finding excited-state solutions to self-consistent field (SCF) equations. Instead of using the aufbau principle, the algorithm maximizes the overlap between the occupied orbitals on successive SCF iterations. This prevents variational collapse to the ground state and guides the SCF process toward the nearest, rather than the lowest energy, solution. The resulting excited-state solutions can be treated in the same way as the ground-state solution and, in particular, derivatives of excited-state energies can be computed using ground-state code. We assess the performance of our method by applying it to a variety of excited-state problems including the calculation of excitation energies, charge-transfer states, and excited-state properties.
منابع مشابه
KINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PARTI. A MODIFIED NEGLECT OF DIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSIS OF ETHYL VINYL ETHER
Using a computer code called MOPAC, an acronym for a general Molecular Orbital Package (Quantum Chemistry Programme Exchange (QCPE) Programme No. 455), the geometries and heats of formation of the reactant, the products and the trdnsition state were computed by the MNDO semi- empiricalself consistent field (SCF) method for the pyrolysis of ethyl vinyl ether. ((Force))calculation on the reac...
متن کاملSelf-consistent-field calculations of core excited states.
The accuracy of core excitation energies and core electron binding energies computed within a Delta self-consistent-field framework is assessed. The variational collapse of the core excited state is prevented by maintaining a singly occupied core orbital using an overlap criterion called the maximum overlap method. When applied to a wide range of small organic molecules, the resulting core exci...
متن کاملModelling excited states of weakly bound complexes with density functional theory.
The binding within the ethene-argon and formaldehyde-methane complexes in the ground and electronically excited states is studied with equation of motion coupled cluster theory (EOM-CCSD), second-order Møller-Plesset perturbation theory (MP2) and density functional theory with dispersion corrections (DFT-D). Electronically excited states are studied within MP2 and Kohn-Sham DFT formalisms by ex...
متن کاملCommunication: Hartree-Fock description of excited states of H₂.
Hartree-Fock (HF) theory is most often applied to study the electronic ground states of molecular systems. However, with the advent of numerical techniques for locating higher solutions of the self-consistent field equations, it is now possible to examine the extent to which such mean-field solutions are useful approximations to electronic excited states. In this Communication, we use the maxim...
متن کاملShould bromoform absorb at wavelengths longer than 300 nm ?
A theoretical study of the low-lying singlet and triplet electronic states of CHBr3 is presented. Calculations of excitation energies and oscillator strengths are presented using excited state coupled cluster response methods, as well as the complete active space self-consistent field method with the full Breit–Pauli spin–orbit operator. These calculations predict that for CHBr3 there is only o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 112 50 شماره
صفحات -
تاریخ انتشار 2008